
CADASTRE-SE
Temos Uma versão desta Revista Especificamente para SmartPhone
Mais Enxuta: Somente Vídeo Aulas e EVENTOS!
Music Player


l


Disciplina: Programação Linear
PESQUISA OPERACIONAL


(Interpretação da Solução de um Sistema Linear no Espaço das Colunas)
A figura abaixo apresenta um sistema linear formado por duas equações e duas variáveis x1 e x2. A solução (única) deste sistema é x1=3 e x2=2, a qual pode ser obtida, no espaço das linhas, por métodos de: substituição, adição, determinantes, Gauss-Jordan
Porém, em aplicações, por exemplo, como a resolução de problemas de Programação Linear que envolve a resolução seqüencial de um grande número de sistemas de equações lineares simultâneos, o enfoque é o espaço das colunas (vetores ou matriz coluna) a1, a2 e b1. Neste contexto, a questão que se coloca é a de encontrar números reais X1 e X2, de maneira a satisfazer o sistema a1.X1 + a2.X2=b1, para vetores a1, a2 e b1 fixos dados.
Ainda, na figura abaixo, tem-se a1=(2,3), a2=(3,2) e b1=(12,13). A solução (agora, vetorial) do problema começa usando-se a regra do paralelogramo, para representarmos o vetor a1+a2. Em seguida, traçamos linhas paralelas (em verde) aos lados (em vermelho) do paralelogramo (sombreado em cinza) pela extremidade do vetor b1. Na interseção do prolongamento de a1 (e a2) à linha (em verde) que sai de b1 podemos ver (por inspeção) em quanto é preciso aumentar ou diminuir a1 (e a2), isto é, qual é o valor de X1 (e X2). Neste exemplo, podemos ver que X1=3 e X2=2, que já sabíamos ser a solução do sistema linear no espaço das linhas.

A partir de 12 Dez de 2020
Você é o Visitante de Número